The input consists of multiple datasets, each in the following format.
n m k a b x1 y1 d1 x2 y2 d2 …
xm ym dm
Every input item in a dataset is a non-negative integer. Two or more input items in a line are separated by a space.
n is the number of nodes in the graph. You can assume the inequality 2 ≤ n ≤ 50. m is the number of (directed) edges. a is the start node, and b is the goal node. They are between 1 and n, inclusive. You are required to find the k-th shortest path from a to b. You can assume 1 ≤ k ≤ 200 and a ≠ b.
The i-th edge is from the node xi to yi with the length di (1 ≤ i ≤ m). Both xi and yi are between 1 and n, inclusive. di is between 1 and 10000, inclusive. You can directly go from xi to yi, but not from yi to xi unless an edge from yi to xi is explicitly given. The edge connecting the same pair of nodes is unique, if any, that is, if i ≠ j, it is never the case that xi equals xj and yi equals yj. Edges are not connecting a node to itself, that is, xi never equals yi. Thus the inequality 0 ≤ m ≤ n(n − 1) holds.
Note that the given graph may be quite unrealistic as a road network. Both the cases m = 0 and m = n(n − 1) are included in the judges’ data.
The last dataset is followed by a line containing five zeros (separated by a space).
For each dataset in the input, one line should be output as specified below. An output line should not contain extra characters such as spaces.
If the number of distinct paths from a to b is less than k, the string None
should be printed. Note that the first letter of None
is in uppercase, while the other letters are in lowercase.
If the number of distinct paths from a to b is k or more, the node numbers visited in the k-th shortest path should be printed in the visited order, separated by a hyphen (minus sign). Note that a must be the first, and i must be the last in the printed line.
In this problem the term shorter (thus shortest also) has a special meaning. A path P is defined to be shorter than Q, if and only if one of the following conditions holds.
A path visiting the same node twice or more is not allowed.
5 20 10 1 5
1 2 1
1 3 2
1 4 1
1 5 3
2 1 1
2 3 1
2 4 2
2 5 2
3 1 1
3 2 2
3 4 1
3 5 1
4 1 1
4 2 1
4 3 1
4 5 2
5 1 1
5 2 1
5 3 1
5 4 1
4 6 1 1 4
2 4 2
1 3 2
1 2 1
1 4 3
2 3 1
3 4 1
3 3 5 1 3
1 2 1
2 3 1
1 3 1
0 0 0 0 0
1-2-4-3-5
1-2-3-4
None
In the case of the first dataset, there are 16 paths from the node 1 to 5. They are ordered as follows (The number in parentheses is the length of the path).
1 (3) 1-2-3-5 9 (5) 1-2-3-4-5 2 (3) 1-2-5 10 (5) 1-2-4-3-5 3 (3) 1-3-5 11 (5) 1-2-4-5 4 (3) 1-4-3-5 12 (5) 1-3-4-5 5 (3) 1-4-5 13 (6) 1-3-2-5 6 (3) 1-5 14 (6) 1-3-4-2-5 7 (4) 1-4-2-3-5 15 (6) 1-4-3-2-5 8 (4) 1-4-2-5 16 (8) 1-3-2-4-5