Numbers of black and white points are placed on a plane. Let’s imagine that a straight line of infinite length is drawn on the plane. When the line does not meet any of the points, the line divides these points into two groups. If the division by such a line results in one group consisting only of black points and the other consisting only of white points, we say that the line “separates black and white points”.
Let’s see examples in Figure 3. In the leftmost example, you can easily find that the black and white points can be perfectly separated by the dashed line according to their colors. In the remaining three examples, there exists no such straight line that gives such a separation.

In this problem, given a set of points with their colors and positions, you are requested to decide whether there exists a straight line that separates black and white points.